Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
PLoS One ; 18(3): e0283304, 2023.
Article in English | MEDLINE | ID: covidwho-2270561

ABSTRACT

INTRODUCTION: Extracorporeal blood purification systems represent a promising alternative for treatment of blood stream infections with multiresistant bacteria. OBJECTIVES: The aim of this study was to analyse the binding activity of S. aureus to Seraph affinity filters based on heparin coated beads and to identify effectors influencing this binding activity. RESULTS: To test the binding activity, we used gfp-expressing S. aureus Newman strains inoculated either in 0.9% NaCl or in blood plasma and determined the number of unbound bacteria by FACS analyses after passing through Seraph affinity filters. The binding activity of S. aureus was clearly impaired in human plasma: while a percent removal of 42% was observed in 0.9% NaCl (p-value 0.0472) using Seraph mini columns, a percent removal of only 10% was achieved in human plasma (p-value 0.0934). The different composition of surface proteins in S. aureus caused by the loss of SarA, SigB, Lgt, and SaeS had no significant influence on its binding activity. In a clinically relevant approach using the Seraph® 100 Microbind® Affinity Filter and 1000 ml of human blood plasma from four different donors, the duration of treatment was shown to have a critical effect on the rate of bacterial reduction. Within the first four hours, the number of bacteria decreased continuously and the reduction in bacteria reached statistical significance after two hours of treatment (percentage reduction 64%, p-value 0.01165). The final reduction after four hours of treatment was close to 90% and is dependent on donor. The capacity of Seraph® 100 for S. aureus in human plasma was approximately 5 x 108 cells. CONCLUSIONS: The Seraph affinity filter, based on heparin-coated beads, is a highly efficient method for reducing S. aureus in human blood plasma, with efficiency dependent on blood plasma composition and treatment duration.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Duration of Therapy , Membrane Proteins/metabolism , Saline Solution/pharmacology , Bacteria , Heparin/pharmacology
2.
Int J Biol Macromol ; 226: 974-981, 2023 Jan 31.
Article in English | MEDLINE | ID: covidwho-2239512

ABSTRACT

The ongoing pandemic of COVID-19, caused by the infection of SARS-CoV-2, has generated significant harm to the world economy and taken numerous lives. This syndrome is characterized by an acute inflammatory response, mainly in the lungs and kidneys. Accumulated evidence suggests that exogenous heparin might contribute to the alleviation of COVID-19 severity through anticoagulant and various non-anticoagulant mechanisms, including heparanase inhibition, chemokine and cytokine neutralization, leukocyte trafficking interference, viral cellular-entry obstruction, and extracellular cytotoxic histone neutralization. However, the side effects of heparin and potential drawbacks of administering heparin therapy need to be considered. Here, the current heparin therapy drawbacks were covered in great detail: structure-activity relationship (SAR) mystery, potential contamination, and anticoagulant activity. Considering these unfavorable effects, specific non-anticoagulant heparin derivatives with antiviral activity could be promising candidates to treat COVID-19. Furthermore, a structurally diverse library of non-anticoagulant heparin derivatives, constructed by chemical modification and enzymatic depolymerization, would contribute to a deeper understanding of SAR mystery. In short, targeting non-anticoagulant mechanisms may produce better therapeutic effects, overcoming the side effects in patients suffering from COVID-19 and other inflammatory disorders.


Subject(s)
COVID-19 , Heparin , Humans , Heparin/pharmacology , SARS-CoV-2 , COVID-19 Drug Treatment , Anticoagulants/pharmacology , Anticoagulants/therapeutic use
3.
Viruses ; 14(12)2022 11 24.
Article in English | MEDLINE | ID: covidwho-2123875

ABSTRACT

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.


Subject(s)
Epithelial Cells , Heparin , SARS-CoV-2 , Virus Replication , Humans , COVID-19 , Epithelial Cells/virology , Heparin/pharmacology , Pandemics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication/drug effects
4.
Blood ; 140(8): 809-814, 2022 08 25.
Article in English | MEDLINE | ID: covidwho-2083050

ABSTRACT

Coronavirus disease-19 (COVID-19) includes a thromboinflammatory syndrome that may manifest with microvascular and macrovascular thrombosis. Patients with COVID-19 have a higher incidence of venous thromboembolism than other hospitalized patients. Three randomized control trials suggesting benefit of therapeutic heparin in hospitalized noncritically ill patients with COVID-19 have led to conditional guideline recommendations for this treatment. By contrast, prophylactic-dose heparin is recommended for critically ill patients. Unprecedented collaboration and rapidly funded research have improved care of hospitalized patients with COVID-19.


Subject(s)
COVID-19 , Venous Thromboembolism , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Blood Coagulation , COVID-19/complications , Heparin/pharmacology , Heparin/therapeutic use , Humans , Venous Thromboembolism/drug therapy , Venous Thromboembolism/epidemiology , Venous Thromboembolism/etiology
5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071505

ABSTRACT

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Molecular Docking Simulation , Coronavirus 3C Proteases , Molecular Dynamics Simulation , Fondaparinux , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Dabigatran , Ticagrelor , Eptifibatide , Gentian Violet , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/metabolism , Heparin/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
6.
Carbohydr Polym ; 295: 119818, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1914200

ABSTRACT

Heparin, an old but first-line anticoagulant, has been used over a century. It is a heterogeneous, linear, highly sulfated, anionic glycosaminoglycan with a broad distribution in relative molecular weight and charge density. These structural properties allow heparin to selectively interact with multiple proteins, leading to heparin's various pharmacological functions, such as anticoagulant, anti-viral, anti-tumor and anti-inflammatory activities. Clinical data suggest that unfractionated heparin or low molecule weight heparin could decrease mortality in COVID-19 patients with sepsis-induced hypercoagulation through the anticoagulant, anti-viral and anti-inflammatory activities of these drugs. Thus, the non-anticoagulant activity of heparin has again aroused attention. This review highlights recent advances in the preparation of heparin-derived drugs and clinical research on its non-anticoagulant properties over the past decade, to further the development and utilization of these important drugs.


Subject(s)
COVID-19 Drug Treatment , Heparin , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anticoagulants/chemistry , Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Heparin/chemistry , Heparin/pharmacology , Heparin/therapeutic use , Heparin, Low-Molecular-Weight/chemistry , Heparin, Low-Molecular-Weight/pharmacology , Heparin, Low-Molecular-Weight/therapeutic use , Humans
7.
Front Immunol ; 13: 916512, 2022.
Article in English | MEDLINE | ID: covidwho-1911050

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a systemic disease associated with injury (thinning) of the endothelial glycocalyx (eGC), a protective layer on the vascular endothelium. The aim of this translational study was to investigate the role of the eGC-degrading enzyme heparanase (HPSE), which is known to play a central role in the destruction of the eGC in bacterial sepsis. Excess activity of HPSE in plasma from COVID-19 patients correlated with several markers of eGC damage and perfused boundary region (PBR, an inverse estimate of glycocalyx dimensions of vessels with a diameter 4-25 µm). In a series of translational experiments, we demonstrate that the changes in eGC thickness of cultured cells exposed to COVID-19 serum correlated closely with HPSE activity in concordant plasma samples (R = 0.82, P = 0.003). Inhibition of HPSE by a nonanticoagulant heparin fragment prevented eGC injury in response to COVID-19 serum, as shown by atomic force microscopy and immunofluorescence imaging. Our results suggest that the protective effect of heparin in COVID-19 may be due to an eGC-protective off-target effect.


Subject(s)
COVID-19 , Glucuronidase , Glycocalyx , COVID-19/metabolism , COVID-19/pathology , Glucuronidase/metabolism , Glycocalyx/metabolism , Glycocalyx/pathology , Heparin/pharmacology , Humans
8.
J Transl Med ; 20(1): 265, 2022 06 11.
Article in English | MEDLINE | ID: covidwho-1885321

ABSTRACT

BACKGROUND: Sepsis is a life-threatening syndrome eliciting highly heterogeneous host responses. Current prognostic evaluation methods used in clinical practice are characterized by an inadequate effectiveness in predicting sepsis mortality. Rapid identification of patients with high mortality risk is urgently needed. The phenotyping of patients will assistant invaluably in tailoring treatments. METHODS: Machine learning and deep learning technology are used to characterize the patients' phenotype and determine the sepsis severity. The database used in this study is MIMIC-III and MIMIC-IV ('Medical information Mart for intensive care') which is a large, public, and freely available database. The K-means clustering is used to classify the sepsis phenotype. Convolutional neural network (CNN) was used to predict the 28-day survival rate based on 35 blood test variables of the sepsis patients, whereas a double coefficient quadratic multivariate fitting function (DCQMFF) is utilized to predict the 28-day survival rate with only 11 features of sepsis patients. RESULTS: The patients were grouped into four clusters with a clear survival nomogram. The first cluster (C_1) was characterized by low white blood cell count, low neutrophil, and the highest lymphocyte proportion. C_2 obtained the lowest Sequential Organ Failure Assessment (SOFA) score and the highest survival rate. C_3 was characterized by significantly prolonged PTT, high SIC, and a higher proportion of patients using heparin than the patients in other clusters. The early mortality rate of patients in C_3 was high but with a better long-term survival rate than that in C_4. C_4 contained septic coagulation patients with the worst prognosis, characterized by slightly prolonged partial thromboplastin time (PTT), significantly prolonged prothrombin time (PT), and high septic coagulation disease score (SIC). The survival rate prediction accuracy of CNN and DCQMFF models reached 92% and 82%, respectively. The models were tested on an external dataset (MIMIC-IV) and achieved good performance. A DCQMFF-based application platform was established for fast prediction of the 28-day survival rate. CONCLUSION: CNN and DCQMFF accurately predicted the sepsis patients' survival, while K-means successfully identified the phenotype groups. The distinct phenotypes associated with survival, and significant features correlated with mortality were identified. The findings suggest that sepsis patients with abnormal coagulation had poor outcomes, abnormal coagulation increase mortality during sepsis. The anticoagulation effects of appropriate heparin sodium treatment may improve extensive micro thrombosis-caused organ failure.


Subject(s)
Blood Coagulation Disorders , Sepsis , Hematologic Tests , Heparin/pharmacology , Heparin/therapeutic use , Humans , Machine Learning , Prognosis , Retrospective Studies
9.
Viruses ; 14(4)2022 04 15.
Article in English | MEDLINE | ID: covidwho-1792418

ABSTRACT

Lamellarin α 20-sulfate is a cell-impenetrable marine alkaloid that can suppress infection that is mediated by the envelope glycoprotein of human immunodeficiency virus type 1. We explored the antiviral action and mechanisms of this alkaloid against emerging enveloped RNA viruses that use endocytosis for infection. The alkaloid inhibited the infection of retroviral vectors that had been pseudotyped with the envelope glycoprotein of Ebola virus and SARS-CoV-2. The antiviral effects of lamellarin were independent of the retrovirus Gag-Pol proteins. Interestingly, although heparin and dextran sulfate suppressed the cell attachment of vector particles, lamellarin did not. In silico structural analyses of the trimeric glycoprotein of the Ebola virus disclosed that the principal lamellarin-binding site is confined to a previously unappreciated cavity near the NPC1-binding site and fusion loop, whereas those for heparin and dextran sulfate were dispersed across the attachment and fusion subunits of the glycoproteins. Notably, lamellarin binding to this cavity was augmented under conditions where the pH was 5.0. These results suggest that the final action of the alkaloid against Ebola virus is specific to events following endocytosis, possibly during conformational glycoprotein changes in the acidic environment of endosomes. Our findings highlight the unique biological and physicochemical features of lamellarin α 20-sulfate and should lead to the further use of broadly reactive antivirals to explore the structural mechanisms of virus replication.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ebolavirus , Hemorrhagic Fever, Ebola , Alkaloids/pharmacology , Antiviral Agents/chemistry , Dextran Sulfate , Ebolavirus/metabolism , Glycoproteins , Hemorrhagic Fever, Ebola/drug therapy , Heparin/pharmacology , Humans , SARS-CoV-2 , Virus Internalization
10.
Molecules ; 27(6)2022 Mar 17.
Article in English | MEDLINE | ID: covidwho-1753654

ABSTRACT

This article discusses the importance of D-xylose for fighting viruses (especially SARS-CoV-2) that use core proteins as receptors at the cell surface, by providing additional supporting facts that these viruses probably bind at HS/CS attachment sites (i.e., the hydroxyl groups of Ser/Thr residues of the core proteins intended to receive the D-xylose molecules to initiate the HS/CS chains). Essentially, the additional supporting facts, are: some anterior studies on the binding sites of exogenous heparin and soluble HS on the core proteins, the inhibition of the viral entry by pre-incubation of cells with heparin, and additionally, corroborating studies about the mechanism leading to type 2 diabetes during viral infection. We then discuss the mechanism by which serine protease inhibitors inhibit SARS-CoV-2 entry. The biosynthesis of heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (Hep) is initiated not only by D-xylose derived from uridine diphosphate (UDP)-xylose, but also bioactive D-xylose molecules, even in situations where cells were previously treated with GAG inhibitors. This property of D-xylose shown by previous anterior studies helped in the explanation of the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This explanation is completed here by a preliminary estimation of xyloside GAGs (HS/CS/DS/Hep) in the body, and with other previous studies helping to corroborate the mechanism by which the D-xylose exhibits its antiglycaemic properties and the mechanism leading to type 2 diabetes during SARS-CoV-2 infection. This paper also discusses the confirmatory studies of regarding the correlation between D-xylose and COVID-19 severity.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Type 2 , Heparin/metabolism , Heparin/pharmacology , Heparitin Sulfate/metabolism , Humans , SARS-CoV-2 , Serine Proteinase Inhibitors
11.
Int J Mol Sci ; 23(3)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1686810

ABSTRACT

Aortic aneurysms are sometimes associated with enhanced-fibrinolytic-type disseminated intravascular coagulation (DIC). In enhanced-fibrinolytic-type DIC, both coagulation and fibrinolysis are markedly activated. Typical cases show decreased platelet counts and fibrinogen levels, increased concentrations of fibrin/fibrinogen degradation products (FDP) and D-dimer, and increased FDP/D-dimer ratios. Thrombin-antithrombin complex or prothrombin fragment 1 + 2, as markers of coagulation activation, and plasmin-α2 plasmin inhibitor complex, a marker of fibrinolytic activation, are all markedly increased. Prolongation of prothrombin time (PT) is not so obvious, and the activated partial thromboplastin time (APTT) is rather shortened in some cases. As a result, DIC can be neither diagnosed nor excluded based on PT and APTT alone. Many of the factors involved in coagulation and fibrinolysis activation are serine proteases. Treatment of enhanced-fibrinolytic-type DIC requires consideration of how to control the function of these serine proteases. The cornerstone of DIC treatment is treatment of the underlying pathology. However, in some cases surgery is either not possible or exacerbates the DIC associated with aortic aneurysm. In such cases, pharmacotherapy becomes even more important. Unfractionated heparin, other heparins, synthetic protease inhibitors, recombinant thrombomodulin, and direct oral anticoagulants (DOACs) are agents that inhibit serine proteases, and all are effective against DIC. Inhibition of activated coagulation factors by anticoagulants is key to the treatment of DIC. Among them, DOACs can be taken orally and is useful for outpatient treatment. Combination therapy of heparin and nafamostat allows fine-adjustment of anticoagulant and antifibrinolytic effects. While warfarin is an anticoagulant, this agent is ineffective in the treatment of DIC because it inhibits the production of coagulation factors as substrates without inhibiting activated coagulation factors. In addition, monotherapy using tranexamic acid in cases of enhanced-fibrinolytic-type DIC may induce fatal thrombosis. If tranexamic acid is needed for DIC, combination with anticoagulant therapy is of critical importance.


Subject(s)
Aortic Aneurysm/complications , Disseminated Intravascular Coagulation/therapy , Fibrinolysis/drug effects , Anticoagulants/pharmacology , Antifibrinolytic Agents/blood , Fibrin Fibrinogen Degradation Products , Fibrinolysin , Fibrinolysis/physiology , Heparin/pharmacology , Humans , Partial Thromboplastin Time , Prothrombin Time , alpha-2-Antiplasmin
12.
Int J Mol Sci ; 23(3)2022 Feb 05.
Article in English | MEDLINE | ID: covidwho-1674671

ABSTRACT

Inflammation and thrombosis are closely intertwined in numerous disorders, including ischemic events and sepsis, as well as coronavirus disease 2019 (COVID-19). Thrombotic complications are markers of disease severity in both sepsis and COVID-19 and are associated with multiorgan failure and increased mortality. Immunothrombosis is driven by the complement/tissue factor/neutrophil axis, as well as by activated platelets, which can trigger the release of neutrophil extracellular traps (NETs) and release further effectors of immunothrombosis, including platelet factor 4 (PF4/CXCL4) and high-mobility box 1 protein (HMGB1). Many of the central effectors of deregulated immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (pEVs) expressing PF4, soluble PF4, HMGB1, histones, as well as histone-decorated NETs, are positively charged and thus bind to heparin. Here, we provide evidence that adsorbents functionalized with endpoint-attached heparin efficiently deplete activated platelets, pEVs, PF4, HMGB1 and histones/nucleosomes. We propose that this elimination of central effectors of immunothrombosis, rather than direct binding of pathogens, could be of clinical relevance for mitigating thrombotic complications in sepsis or COVID-19 using heparin-functionalized adsorbents.


Subject(s)
Blood Proteins/isolation & purification , Heparin/pharmacology , Thromboinflammation/drug therapy , Blood Coagulation/physiology , Blood Platelets/metabolism , Blood Proteins/metabolism , COVID-19/metabolism , Extracellular Traps/immunology , Extracellular Traps/metabolism , HMGB Proteins/isolation & purification , HMGB Proteins/metabolism , HMGB1 Protein/isolation & purification , HMGB1 Protein/metabolism , Heparin/metabolism , Histones/isolation & purification , Histones/metabolism , Humans , Neutrophils/metabolism , Platelet Activation/immunology , Platelet Factor 4/isolation & purification , Platelet Factor 4/metabolism , SARS-CoV-2/pathogenicity , Sepsis/blood , Sepsis/metabolism , Thromboplastin/metabolism , Thrombosis/drug therapy
13.
Viruses ; 14(1)2021 12 24.
Article in English | MEDLINE | ID: covidwho-1580407

ABSTRACT

Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.


Subject(s)
Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19/epidemiology , Polysaccharides/pharmacology , Viruses/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Heparin/chemical synthesis , Heparin/chemistry , Heparin/pharmacology , Humans , Polysaccharides/chemistry , SARS-CoV-2/drug effects , Structure-Activity Relationship , Sulfates/chemistry , Sulfates/pharmacology , Virus Diseases/drug therapy , Virus Internalization/drug effects , Viruses/pathogenicity , COVID-19 Drug Treatment
14.
J Biol Chem ; 298(2): 101507, 2022 02.
Article in English | MEDLINE | ID: covidwho-1587357

ABSTRACT

Heparin, a naturally occurring glycosaminoglycan, has been found to have antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of COVID-19. To elucidate the mechanistic basis for the antiviral activity of heparin, we investigated the binding of heparin to the SARS-CoV-2 spike glycoprotein by means of sliding window docking, molecular dynamics simulations, and biochemical assays. Our simulations show that heparin binds at long, positively charged patches on the spike glycoprotein, thereby masking basic residues of both the receptor-binding domain (RBD) and the multifunctional S1/S2 site. Biochemical experiments corroborated the simulation results, showing that heparin inhibits the furin-mediated cleavage of spike by binding to the S1/S2 site. Our simulations showed that heparin can act on the hinge region responsible for motion of the RBD between the inactive closed and active open conformations of the spike glycoprotein. In simulations of the closed spike homotrimer, heparin binds the RBD and the N-terminal domain of two adjacent spike subunits and hinders opening. In simulations of open spike conformations, heparin induces stabilization of the hinge region and a change in RBD motion. Our results indicate that heparin can inhibit SARS-CoV-2 infection by three mechanisms: by allosterically hindering binding to the host cell receptor, by directly competing with binding to host heparan sulfate proteoglycan coreceptors, and by preventing spike cleavage by furin. Furthermore, these simulations provide insights into how host heparan sulfate proteoglycans can facilitate viral infection. Our results will aid the rational optimization of heparin derivatives for SARS-CoV-2 antiviral therapy.


Subject(s)
COVID-19/metabolism , Heparin/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Antiviral Agents/chemistry , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Binding Sites , Heparin/chemistry , Heparin/pharmacology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , COVID-19 Drug Treatment
15.
Int J Mol Sci ; 22(18)2021 Sep 17.
Article in English | MEDLINE | ID: covidwho-1430892

ABSTRACT

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Subject(s)
Antiviral Agents/pharmacology , Heparin/pharmacology , Magnesium Chloride/pharmacology , Acyclovir/pharmacology , Adenoviruses, Human/drug effects , Adenoviruses, Human/physiology , Animals , Antiviral Agents/chemistry , CHO Cells , Cell Line, Tumor , Chlorocebus aethiops , Cricetulus , Drug Evaluation, Preclinical , Fibroblasts , Heparin/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/physiology , Humans , Magnesium Chloride/chemistry , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Structure , Primary Cell Culture , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Structure-Activity Relationship , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
17.
Crit Care ; 25(1): 299, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1367680

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) may predispose patients to thrombotic events. The best anticoagulation strategy for continuous renal replacement therapy (CRRT) in such patients is still under debate. The purpose of this study was to evaluate the impact that different anticoagulation protocols have on filter clotting risk. METHODS: This was a retrospective observational study comparing two different anticoagulation strategies (citrate only and citrate plus intravenous infusion of unfractionated heparin) in patients with acute kidney injury (AKI), associated or not with COVID-19 (COV + AKI and COV - AKI, respectively), who were submitted to CRRT. Filter clotting risks were compared among groups. RESULTS: Between January 2019 and July 2020, 238 patients were evaluated: 188 in the COV + AKI group and 50 in the COV - AKI group. Filter clotting during the first filter use occurred in 111 patients (46.6%). Heparin use conferred protection against filter clotting (HR = 0.37, 95% CI 0.25-0.55), resulting in longer filter survival. Bleeding events and the need for blood transfusion were similar between the citrate only and citrate plus unfractionated heparin strategies. In-hospital mortality was higher among the COV + AKI patients than among the COV - AKI patients, although it was similar between the COV + AKI patients who received heparin and those who did not. Filter clotting was more common in patients with D-dimer levels above the median (5990 ng/ml). In the multivariate analysis, heparin was associated with a lower risk of filter clotting (HR = 0.28, 95% CI 0.18-0.43), whereas an elevated D-dimer level and high hemoglobin were found to be risk factors for circuit clotting. A diagnosis of COVID-19 was marginally associated with an increased risk of circuit clotting (HR = 2.15, 95% CI 0.99-4.68). CONCLUSIONS: In COV + AKI patients, adding systemic heparin to standard regional citrate anticoagulation may prolong CRRT filter patency by reducing clotting risk with a low risk of complications.


Subject(s)
Acute Kidney Injury/drug therapy , Citric Acid/pharmacology , Continuous Renal Replacement Therapy/instrumentation , Heparin/pharmacology , Micropore Filters/standards , Acute Kidney Injury/epidemiology , Acute Kidney Injury/etiology , Adult , COVID-19/complications , COVID-19/epidemiology , Citric Acid/adverse effects , Citric Acid/therapeutic use , Cohort Studies , Continuous Renal Replacement Therapy/methods , Continuous Renal Replacement Therapy/statistics & numerical data , Female , Heparin/adverse effects , Heparin/therapeutic use , Humans , Kaplan-Meier Estimate , Male , Micropore Filters/statistics & numerical data , Middle Aged , Proportional Hazards Models , Retrospective Studies
18.
Curr Res Transl Med ; 69(4): 103300, 2021 10.
Article in English | MEDLINE | ID: covidwho-1294187

ABSTRACT

Heparin has served as a mainstream anticoagulant for over eight decades. Clinically heparin-derived compounds significantly contribute to prevention and treatment of thrombotic events complicated in numerous medical conditions such as venous thromboembolism, coronary artery disease and extracorporeal circulation processes. Moreover in recent years, various off-labeled efficacious potentials of heparin beyond anti-coagulation are dramatically emerging, and increasingly investigated in clinical studies. Herein this article presents a comprehensive update on the expanded applications of heparin agents, covering the pregnant clinic, respiratory inflammation, renal disease, sepsis, pancreatitis, among others. It aims to maximize the beneficial profile of a pharmaceutical product through medical re-purposing development, exemplified by heparin, to address the unmet clinical needs of severe illness including coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Heparin/therapeutic use , SARS-CoV-2 , Abortion, Habitual/prevention & control , Burns/drug therapy , COVID-19/blood , COVID-19/complications , Female , Forecasting , Heparin/pharmacology , Humans , Neoplasms/blood , Neoplasms/complications , Nephrotic Syndrome/drug therapy , Pancreatitis/drug therapy , Pregnancy , Pregnancy Complications/drug therapy , Respiration Disorders/drug therapy , Sepsis/drug therapy , Thromboembolism/prevention & control , Thrombophilia/drug therapy , Thrombophilia/etiology
19.
N Engl J Med ; 385(8): 720-728, 2021 08 19.
Article in English | MEDLINE | ID: covidwho-1262030

ABSTRACT

The use of high-dose intravenous immune globulin (IVIG) plus anticoagulation is recommended for the treatment of vaccine-induced immune thrombotic thrombocytopenia (VITT), a rare side effect of adenoviral vector vaccines against coronavirus disease 2019 (Covid-19). We describe the response to IVIG therapy in three of the first patients in whom VITT was identified in Canada after the receipt of the ChAdOx1 nCoV-19 vaccine. The patients were between the ages of 63 and 72 years; one was female. At the time of this report, Canada had restricted the use of the ChAdOx1 nCoV-19 vaccine to persons who were 55 years of age or older on the basis of reports that VITT had occurred primarily in younger persons. Two of the patients in our study presented with limb-artery thrombosis; the third had cerebral venous and arterial thrombosis. Variable patterns of serum-induced platelet activation were observed in response to heparin and platelet factor 4 (PF4), indicating the heterogeneity of the manifestations of VITT in serum. After the initiation of IVIG, reduced antibody-induced platelet activation in serum was seen in all three patients. (Funded by the Canadian Institutes of Health Research.).


Subject(s)
COVID-19 Vaccines/adverse effects , Immunoglobulins, Intravenous , Thrombocytopenia/therapy , Thrombosis/therapy , Aged , ChAdOx1 nCoV-19 , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrinogen/analysis , Heparin/pharmacology , Humans , Male , Middle Aged , Platelet Count , Platelet Factor 4/pharmacology , Serotonin/blood , Thrombocytopenia/blood , Thrombocytopenia/etiology , Thrombosis/etiology , Thrombosis/immunology
20.
Cells ; 10(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1259431

ABSTRACT

Coronaviruses such as SARS-CoV-2, which is responsible for COVID-19, depend on virus spike protein binding to host cell receptors to cause infection. The SARS-CoV-2 spike protein binds primarily to ACE2 on target cells and is then processed by membrane proteases, including TMPRSS2, leading to viral internalisation or fusion with the plasma membrane. It has been suggested, however, that receptors other than ACE2 may be involved in virus binding. We have investigated the interactions of recombinant versions of the spike protein with human epithelial cell lines that express low/very low levels of ACE2 and TMPRSS2 in a proxy assay for interaction with host cells. A tagged form of the spike protein containing the S1 and S2 regions bound in a temperature-dependent manner to all cell lines, whereas the S1 region alone and the receptor-binding domain (RBD) interacted only weakly. Spike protein associated with cells independently of ACE2 and TMPRSS2, while RBD required the presence of high levels of ACE2 for interaction. As the spike protein has previously been shown to bind heparin, a soluble glycosaminoglycan, we tested the effects of various heparins on ACE2-independent spike protein interaction with cells. Unfractionated heparin inhibited spike protein interaction with an IC50 value of <0.05 U/mL, whereas two low-molecular-weight heparins were less effective. A mutant form of the spike protein, lacking the arginine-rich putative furin cleavage site, interacted only weakly with cells and had a lower affinity for unfractionated and low-molecular-weight heparin than the wild-type spike protein. This suggests that the furin cleavage site might also be a heparin-binding site and potentially important for interactions with host cells. The glycosaminoglycans heparan sulphate and dermatan sulphate, but not chondroitin sulphate, also inhibited the binding of spike protein, indicating that it might bind to one or both of these glycosaminoglycans on the surface of target cells.


Subject(s)
Angiotensin-Converting Enzyme 2/physiology , Epithelial Cells/metabolism , Heparin/pharmacology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Animals , Binding Sites/drug effects , Binding Sites/genetics , Caco-2 Cells , Cell Line , Chlorocebus aethiops , Dermatan Sulfate/pharmacology , Down-Regulation/drug effects , Epithelial Cells/drug effects , Epithelial Cells/virology , Glycosaminoglycans/pharmacology , HEK293 Cells , HaCaT Cells , Heparitin Sulfate/pharmacology , Humans , Protein Binding/drug effects , Protein Binding/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL